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Abstract  

California methane (CH4) emissions are quantified for three years from two tower networks and 

one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse 

model, initialized by three inventories, to achieve the emission quantification. Results show total 

statewide CH4 emissions of 2.05±0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times 

greater than the anthropogenic emission estimates by California Air Resource Board (CARB). 

Some of differences could be biogenic emissions, super-emitter point sources, and other episodic 

emissions which may not be completely included in the CARB inventory. San Joaquin Valley 

(SJV) has the largest CH4 emissions (0.94±0.18 Tg/yr), followed by the South Coast Air Basin, 

the Sacramento Valley, and the San Francisco Bay Area, 0.39±0.18, 0.21±0.04, and 0.16±0.05 

Tg/yr, respectively.  The dairy and oil/gas production sources in the SJV contribute 0.44±0.36 and 

0.22±0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory 

programs, as it provides a thorough multi-year evaluation of the emissions inventory using 

independent atmospheric measurements, and investigates the utility of a complementary multi-

platform approach in understanding the spatial and temporal patterns of CH4 emissions in the state, 

and identifies opportunities for the expansion and applications of the monitoring network.   

 

Introduction 

California adopted the landmark Global Warming Solutions Act of 2006 to reduce greenhouse gas 

emissions to the 1990 levels by 2020, and has also enacted several ambitious climate strategies to 

mitigate the global warming impacts of methane (CH4), such as Senate Bill No. 1383 which 

requires a 40% reduction in CH4 emissions below 2013 levels by 2030.  A thorough understanding 

of CH4 emission sources is critical to achieve these ambitious emission reduction goals as well as 

to implement efficient and cost-effective policies that will achieve real reductions. 

Over the years, researchers have utilized several measurement frameworks, coupled with top-down 

emission estimation approaches using atmospheric measurements of CH4 mixing ratios to quantify 

methane emissions in California and evaluate bottom-up inventories. These top-down studies have 
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included measurement and analysis schemes such as satellite and airborne remote sensing, ambient 

measurements and inverse modeling, source apportionment, enhancement ratios analysis1-8.  The 

top-down studies for statewide CH4 emissions from 2007 to 2014 are summarized in Table S1, 

and the derived total statewide emissions have ranged from 1.2-2.3 times higher than the CARB 

anthropogenic inventory.  Similarly, top-down studies have been used to estimate CH4 emissions 

in sub-regions of California (Table S2), which contain the largest methane sources in the state, 

including the South Coast Air Basin (SoCAB), the San Joaquin Valley (SJV), the San Francisco 

Bay Area (SFBA), and the Sacramento Valley (SV). The SoCAB and SFBA represent the 

significant urban regions and the SV contains both urban and agricultural sources.  The SJV, on 

the other hand, is predominantly covered by agriculture activities and oil and gas production.   

Most of current top-down studies rely on data from a single measurement platform.  Each platform 

has its own advantages and limitations in constraining emissions. For instance, aircraft and satellite 

platforms have good spatial coverage, but aircraft platform deployment is restricted by expensive 

flight time and is limited to a few days a year, rendering the results as essentially daily snapshots.  

Similarly, most satellites provide only a once-a-day measurement window, and even the satellites 

that have better temporal resolution are still limited in spatial resolution and the precision 

necessary to resolve sources in complicated source domains, such as the SJV. Long-term tower 

measurements have traditionally played an important role in constraining regional emissions. 

However, these networks are generally expensive to site, expand, and operate, which renders a 

dense implementation impractical. Therefore, applying a multi-modal data platform could be a 

useful approach to obtain more comprehensive information about spatial and temporal resolution 

of emission sources in a region.  Additionally, analysis using a single campaign or one year of data 

can be affected by year-to-year temporal and seasonal shifts, such as annual rain and drought 

events.  A multi-year study can provide a more comprehensive evaluation of the inventories and 

help us better understand the emission sources in the state. 

In this study, we conducted a multiplatform inversion analysis to estimate California annual CH4 

emission estimates for a three-year period from 2014 to 2016, using three different datasets. The 

study framework optimized statewide CH4 emissions by adjusting CH4 surface fluxes from the 

prior inventory to better simulate observed atmospheric CH4 mixing ratios. The three different 

datasets include two tower monitoring networks which provide continuous high temporal quality 
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data, as well as a series of aircraft measurement campaigns which provide additional spatial 

coverage to complement the stationary measurements. We conducted six modeling scenarios to 

conduct a set of analysis and further derived ensemble inversion estimates with 18 ensemble 

members by combining the six scenarios with the initializations from three different prior 

inventories to incorporate the uncertainties in the inverse system.  It is the first time that such an 

analysis has been conducted by using multiple measurement platforms and different prior 

inventories for multiple years to constrain top-down CH4 emissions in California.  

Materials and Methods 

Tower- and aircraft-based measurements. This research effort was primarily built around long-

term, high quality measurement data collected at a Statewide GHG Monitoring Network operated 

at multiple regional sites across California by CARB. This network is the first state-operated 

network of its kind, which provides long-term measurements of atmospheric GHG mixing ratios 

in California since 2010 with short time intervals (1-5 seconds, depending on site and specific 

analyzer) and wide spatial coverage (eight towers in the state). The network operates regionally 

representative monitoring stations throughout the state: two towers in the SV, one in the SFBA, 

three in the SJV, and two in the SoCAB (Figure 1 and Table S3). All sites of the network conduct 

continuous ambient air measurements using cavity ring-down CH4 analyzers with temperature and 

pressure control (Picarro Inc, Models 1301, 2301 and 2201-i). The systems use permeation tube 

gas sample driers to dry the intake air and automated drift check and periodic calibration to track 

accuracy and precision of the instruments. All sites were calibrated with standard reference gases 

with mixing ratios on the WMO X2004A scale provided by NOAA ERSL’s central calibration 

laboratory9. Details about the Statewide GHG Monitoring Network are included in Supporting 

Information (S1).  

We also applied other available research measurements to improve the spatial and temporal 

resolutions, and better quantify the regional and sectoral distribution of CH4 emission sources in 

California.  This included airborne and tower-based research measurements which occurred during 

the same time period (Figure 1), including the Megacities Carbon Project (MCP)10-12, and NASA’s 

Alpha Jet Atmospheric eXperiment (AJAX)13-14.  
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The MCP network was started in 2012, and now includes 13 tower/rooftop sites to conduct 

continuous measurements of CH4 mixing ratios in the Southern California region. Two of these 

sites (Mount Wilson (WMO) and San Bernardino (SBC)) belong to the CARB’s Statewide GHG 

Monitoring Network. Three of these sites are considered as the background sites including the San 

Clemente Island (SCI), Victorville (VIC), and La Jolla (LJO). VIC is deployed mainly to track 

easterly flow impacted by out of state sources. LJO is located nearby the coast and impacted by 

on-shore and off-shore flows and potentially provides ocean background information after a 

precision screening. In this study, we used data from the SCI site as the local background in 

SoCAB for 2015 and 2016, similar to Yadav et al12. To run the inversion analysis, we used data 

from six of these sites together with CARB sites which were operational during the time period of 

interest (2015-2016) (Figure 1 and Table S3). We excluded two sites (Granada Hills (GRA) and 

Irvine (IRV)) in the inversions considering they were greatly influenced by local landfills. 

Additional inversion studies with GRA and IRV data could be included in future work after careful 

data screening.  

Twelve AJAX flights were deployed and measured CH4 mixing ratios over the SFBA and the 

northern SJV during 2013 and 2014. In the study, we focused on the data from six AJAX flights 

in summer and fall 2014 (15 July, 25 July, 8 October, 15 October, 24 October, and 11 November) 

(Figure 1). AJAX flights measured CH4 mixing ratios using cavity ring down spectroscopy 

(Picarro Inc., model 2301-m) calibrated regularly to NOAA standard gases, and the data were 

screened for quality and to extract measurements that were taken in or near the planetary boundary 

layer (PBL) (<2.5 km above ground level).  Additional details on the airborne instrumentation and 

its deployment in the 2014 campaign have been described elsewhere15-16. 

The study analysis focused on tower-based CH4 measurements obtained during afternoon hours 

(12-17 Pacific Standard Time (PST)) alone.  This was driven by the consideration that the 

atmospheric boundary layer is well developed during late morning and early afternoon hours, so 

that the measurements result from surface CH4 emissions which are then well mixed in the 

boundary layer.  Moreover, the meteorological model generally captures the daytime atmospheric 

boundary layer, but has difficulty simulating the nocturnal boundary layer after the boundary layer 

collapse17. Therefore, by focusing on the late morning and early afternoon hours, we reduced 

uncertainties to simulate back-trajectories in the tower receptors for several hours.  
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We aggregated the hourly tower-based measurements during 12-17 PST into the 3-hour intervals 

to run the inversions of statewide annual CH4 emissions for better computational efficiency. We 

aggregated measurements of airborne-based CH4 measurements taken from the AJAX field 

campaign into 30 second intervals for the inversions, similar to Cui et al18-19 (Figure 2).  

Background determination. We used the zonal averaged CH4 mixing ratios during 2014-2016 

between 35o and 43o from NOAA Greenhouse Gas Marine Boundary Layer Reference data20 to 

define the backgrounds of CH4 mixing ratios for the tower sites located outside of the SoCAB and 

for the aircraft receptors (Figure 2). Measurements from a remote site (Trinidad Head (THD), 

figure 1) were used to determine the background uncertainty in the inversion analysis.  Hourly 

CH4 backgrounds determined by measurements at the SCI site (Figure 1) were used for deriving 

mixing ratio enhancements for tower sites in the SoCAB. The details of hourly background mixing 

ratios determination in the SoCAB are available in Verhulst et al10 .We also used the NOAA zonal 

mean values to determine the background data for 2014 for the two sites (WMO and SBC) in the 

SoCAB region before MCP network was fully implemented.  

Atmospheric transport. CH4 was treated as a passive atmospheric tracer and the transports of 

CH4 from the surface fluxes to the ambient atmosphere was simulated by the FLEXible PARTicle 

(FLEXPART) Lagrangian particle dispersion model21 driven by the Weather Research and 

Forecasting (WRF22, version 3.7.1) mesoscale model. Back-trajectories from FLEXPART-WRF 

provided the sensitivities of gridded surface CH4 fluxes to measured CH4 mixing ratios, which are 

called the “footprints” (Text S1).  WRF model simulations were conducted with three nested 

domains at the spatial resolutions of 36km, 12km, and 4km, respectively.  The WRF configuration 

(Text S1) is similar to Cai et al. 23-24, which was used for air pollution simulations in California. 

To conduct the long-term simulations in WRF, we made the following modifications to the WRF 

configuration: 1) setting the WRF simulation timescale to a 6-day period, with the 1st day as model 

spin-up; 2) applying the WRF objective analysis for the outermost domain in the study; 3) using 

the Pleim-Xiu land-surface model25-26 to all of WRF domains to improve the first guess fields 

based on analysis data; 4) turning off the topographic surface wind correction in the innermost 

domain; 5) modifying the top layer of the vertical structure from 50 hPa to 100 hPa with the same 

number of the vertical layers; 6) updating sea surface temperature (SST) every 6 hours using time-

varying Global Ocean Data Assimilation Experiment High Resolution SST data; and 7) initializing 
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the soil moisture in the Pleim-Xiu land-surface model with surface moisture availability look-up 

table for April through October, and with analysis data for other months.  

WRF performance has been evaluated by Cai et al.24 for vertical distribution of temperature, 

relative humidity, and wind speed using two-day aircraft measurements in the summer of 2008. 

Good agreement between model and observations was found near surface. Additionally, the same 

model configuration was used to simulate ozone in the SJV during May-September 201227, and 

the long-term model simulations captured the meteorology, i.e. wind speed, temperature, and 

relative humidity, reasonably well based on observations. Here we further evaluate WRF PBLH 

simulations using PBLH retrievals using available measurements from radiosondes, radar wind 

profilers, ground-based LiDAR instruments28, and aircraft soundings during 2014-2016. 

Additional details are available in Supporting Information (Text S1). The mean biases of simulated 

PBLH during 12-17 LT were within 13-316 m or 2-65% of the measurement-determined PBLH 

on average. In addition to model errors, the biases also include the uncertainty from determining 

PBLH based on these observation platforms.  

Simulations from the WRF’s innermost domain were used to drive FLEXPART and map the 

footprints to a 0.1 x 0.1-degree spatial resolution consistent with the gridded prior inventories as 

discussed as below. Each hourly data point from the CARB’s Statewide GHG Monitoring Network 

(2014-2016) and MCP (2015-2016) during 12-17 PST was considered as a receptor. FLEXPART 

was configured to release 5000 particles at the height of receptors and model the transport of the 

particles backward in time for 3 days for each receptor of the CARB’s Statewide GHG Monitoring 

Network, and 1 day for each receptor of the MCP. The back-trajectories were also aggregated into 

the 3-hour intervals for the inversions. For the aircraft measurements, we consider each 30-second 

averaged data point as a receptor, and we simulated 1-day back-trajectories for each receptor. The 

duration of backward simulations was chosen based on some sensitivity tests (Text S1). 

As observed from the footprint analysis, each data platform offers a unique footprint (Text S1). 

The MCP network focuses on the SoCAB region, and the AJAX flights provided insights in the 

SFBA and northern SJV regions, while the CARB network provided an overall statewide coverage 

but has limitations in providing comprehensive regional and local coverage for all source sectors.  

We ran a variety of cases which combined monitoring data from the different available platforms 
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and identified the dataset in each region which provided the highest footprint coverage (Table S4).  

These cases were considered as the optimum regional case and we showed their values 

independently.   

Prior inventories. This study utilized two available gridded CH4 emission inventories for 

California for calendar year 2012 as the original prior inventories (Figure S2). The first inventory 

was obtained from the spatially explicit CALGEM emission model (CALGEM, version 3, 2016), 

after scaling to match the CARB statewide inventory total by region and emission sector2. The 

second inventory was obtained from a gridded national inventory of U.S. methane emissions29 

which is designed to be consistent with the 2016 edition U.S. Environmental Protection Agency 

(EPA) inventory of US Greenhouse Gas Emissions and Sinks (GHGI)30 for the year 2012, from 

which the emissions data for California region was spatially extracted (hereafter “EPA-GHGI”). 

Both of these inventories were gridded at 0.1 x 0.1-degree spatial resolution, and the annualized 

aggregated emissions were extracted for the annual emission analysis in the study. The sectors of 

wetland and crop agriculture have seasonal variations in CALGEM and the sectors of manure 

management, natural gas and petroleum production, stationary combustion, and forest fires have 

monthly/daily variations in EPA-GHGI. However, due to the lack of California-specific seasonal 

factors for many of the anthropogenic sources, which have been found to have seasonal variation, 

such as livestock, landfill, and natural gas demand12, 31-32, we thereby did not configure our 

inversions to include the temporally varied priors. The overall prior simulations were evaluated 

and the analysis suggested that observations were underestimated by model prior simulations with 

absolute mean biases ranging between 24-45 ppb, and the coefficient of determination (R2) values 

ranging from 0.3-0.4 (Figure S3).  

We also conducted a multivariate analysis by combining the different sector groups from the two 

inventories in different combinations to construct a hybrid inventory that would provide the 

additional spatially-resolved prior information.  The hybrid inventory which offered the highest 

R2 in simulating CH4 concentration against the observations was chosen (“Hybrid prior”) (Text 

S1). Thereafter, the two original inventories and the third hybrid inventory were used as the prior 

information to initialize the inverse modeling system, and the posterior estimates were compared 

against the prior to identify the inversion scenario which showed the most improvement. Since 
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CARB publishes a statewide total CH4 emission inventory, we also compared these posterior 

statewide estimates against the CARB inventory. 

Based on the selection of our hybrid inventory, we found the differences between the hybrid 

inventory and CALGEM were mainly from the dairy livestock (DLS) and the oil and natural gas 

(ONG) sectors. The optimized hybrid inventory utilized the higher emissions from EPA-GHGI for 

the DLS and ONG sectors, which are higher than the CALGEM inventory by 19% and 3%, 

respectively. It should be noted that this analysis does not suggest that the hybrid inventory is the 

best prior inventory, however, it adds another dimension to reducing the prior inventory 

uncertainty in the inverse system and can be used to better understand the emission sectors in the 

region.  

Inverse modeling framework. The statewide CH4 top-down emissions were derived using a 

mesoscale Bayesian inverse modeling system. This system was consistent with the framework 

published by Cui et al.18, 33-34 (Text S1).  The study implemented a series of inversion cases to 

conduct inversion analysis for the statewide total CH4 emissions during 2014-2016. The 

descriptions of the inversion cases are shown in Table S7. “2014_Inv”, “2015_Inv”, and 

“2016_Inv” were conducted using CH4 mixing ratio measurements from the CARB’s Statewide 

GHG Monitoring Network. These cases were also useful to investigate the capabilities of the 

current CARB GHG Monitoring Network to constrain the statewide CH4 emissions.  

“2015_Inv_urban” and “2016_Inv_urban” were conducted by adding the MCP monitoring 

network data in the SoCAB to the CARB’s Statewide GHG Monitoring Network data. In addition 

to estimating the statewide emissions, these two cases were also useful to investigate the utility of 

a regional intensive urban network in improving the regional CH4 emission estimates. In addition 

to the above scenarios, we also tested a case which combined data from the AJAX campaign with 

the CARB’s Statewide GHG Monitoring Network data for calendar year 2014 (“2014_Inv_flight”) 

to investigate the utility of adding aircraft measurements with a large spatial coverage to a regional 

monitoring network. 

Results and discussion 
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Statewide total CH4 emission estimates. We conducted multi-platform inversions to derive top-

down statewide CH4 emissions based on the 18 combinations (6 datasets and 3 prior inputs) of 

measurement networks and a-priori emission inventories during 2014-2016. Figure 3 shows the 

inversion results from the 18 individual cases, along with ensemble estimates for each year, as well 

as the overall ensemble estimate for the 2014-2016 period. The maps of differences between the 

posterior and prior estimates are shown in Figure S10.  We also computed the statewide maps 

related to the Fisher information matrix18 to investigate the emissions constrained by the 

observation platforms within the inverse modeling system (Figure S11). The regions associated 

with high values of the diagonal of Fisher information matrix represent the areas of the domain 

that are well constrained by the observations. More ensemble estimates are presented in Table S8 

from the three types of measurement platform and the three types of prior inventories.  

For each case, we compared the CH4 observations used in the inversions (single platform or 

multiple platforms) against simulated CH4 concentrations using the prior inventory and the 

posterior estimates, respectively (Table S9). R2 and the mean biases (model minus observation) 

are used to highlight the improved data-model fit given by the posterior emission estimates. For 

cases using the tower platforms (“CARB towers”, and “CARB towers + MCP towers”), the R2 are 

improved from 0.1-0.4 based on the prior inventory to 0.3-0.4 based on the posterior estimates. R2 

values related to the cases of “CARB towers + AJAX flights” fall within the value of ~0.3 using 

the prior inventory originally and are also slightly improved in the posterior estimates. Moreover, 

the mean biases in all of cases decreased distinctly using the posterior estimates compared to the 

cases with the prior inventory in the study as expected.  

In Figure 3, we compared the study results against the bottom-up annual CH4 emission estimates 

from the CARB inventory for the three years (2014-2016), and showed the range of research 

emission estimates reported in the literature for statewide CH4 emissions. We also compiled the 

annual emission estimates from CALGEM and EPA-GHGI for 2012 for comparison. We calculate 

the top-down statewide CH4 emission inventory in California to be 2.05±0.26 Tg/yr (at 95% 

confidence) based on our 18 different inversions in the study. There is no significant change in 

statewide CH4 emission estimates from the CARB inventory during 2014-2016, and the three-year 

averaged statewide CH4 emissions were 1.57 Tg/yr. This suggests that the inversion analysis of 

the CH4 emissions in California are larger than the CARB inventory by a factor of 1.14-1.47. They 
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are also higher than CALGEM estimates by a factor of 1.0-1.4, and slightly higher than EPA-

GHGI by a factor of 0.9-1.2.  Although there are differences in the total emission estimates for the 

subsets of ensemble analysis, the overall values are consistent within the uncertainty (Figure 3). 

Previous top-down studies have estimated statewide total CH4 emissions to be 1.51-3.70 Tg/yr 

(Table S1), therefore, the emissions estimated in this study fall within the range of previous studies 

but are on the lower end of the spectrum, and is also consistent with our conservative assumption 

in the inversion framework setup (see Text S1).  

CARB bottom-up CH4 inventory only focuses on anthropogenic sources, whereas the top-down 

inversions derive total CH4 emissions.  Emissions from natural sources of CH4 in California, such 

as petroleum seeps35-36 and wetlands37 could partially contribute to the differences between the 

bottom-up inventory and top-down estimates. California wetland emissions are estimated to be 

0.04 Tg/yr33, while La Brea Tar Pits (the large petroleum seep) were estimated to be emitting 0.06 

Tg/yr38.  Together with other excluded emissions (0.11 Tg/yr) in the CARB inventory2 likely 

contribute 15%-50% of the discrepancies between the CARB inventory and our inversions. In 

addition, other contributions from “super-emitters”39-41, episodic emission events42, other un-

inventoried sources, as well as the use of non-region-specific generalized emission factors may be 

underestimating actual emissions and could contribute to the differences.  

There are some differences between the results from cases for the three different platforms (Table 

S8) in terms of the central value of ensemble results. The change between “CARB towers” and 

“CARB towers + AJAX flights” due to the addition of the measurements from NASA AJAX 

flights modifies the emission estimates in Northern California. On the other hand, The estimates 

from “CARB towers + MCP towers” case present higher total statewide CH4 emissions compared 

with the cases of “CARB towers”. These differences are primarily driven by changes in CH4 

emission estimates in the SoCAB region where the MCP network was deployed. Additional 

regional differences are explored in detail in the next sections.  

 

Sub-regional CH4 emission estimates. This study was able to extract CH4 emission estimates in 

the sub-regions to analyze their contributions to the statewide CH4 emissions in California, using 

spatially resolved inversion estimates (Figure 4 and Figure S14). In general, our ensemble 
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inversion estimates in the study by region fall into the range of previous top-down studies. 

Comparing inversion estimates in the study with the two gridded inventories, we found CH4 budget 

estimates from EPA-GHGI and this study are closer in the Central Valley (SJV and SV) than 

CALGEM, but CALGEM estimates and this study are closer in the SoCAB region. CH4 emission 

estimates for SFBA likely are underestimated by the current two bottom-up inventories.  

South Coast Air Basin. The footprint values in Table S4 show that the “CARB towers + MCP 

towers” cases provide additional information to constrain SoCAB emissions beyond the “CARB 

towers” cases. In the maps calculated by the Fisher information matrix for the SocAB (Figure S11), 

we also can compare  the sensitivity of two tower sites (MWO and SBC) used in the “CARB 

towers” cases against the sensitivity offered by eight towers used in the “CARB towers + MCP 

towers” cases. The larger coverage associated with the higher values of the Fisher information 

matrix in the “CARB towers + MCP towers” cases indicate the importance of the MCP deployment, 

and CH4 emissions in SoCAB were better constrained by the addition of data from the MCP 

platform.   

We estimated CH4 emissions in the SoCAB during 2014-2016 to be 0.39±0.18Tg/yr, which is 

higher than the corresponding estimates from the CALGEM (0.349 Tg CH4/yr) by a factor of 0.6-

1.6, and higher than EPA-GHGI (0.257 Tg CH4/yr) by a factor of 0.8-2.2.  

The exceptional gas leak event at Aliso Canyon took place during October 2015 to February 201642.  

A CARB report quantified the CH4 emissions from the leak event and estimated that 0.0996 Tg 

CH4 was emitted into the atmosphere during the event, with 0.0784 Tg CH4 released in 2015 and 

0.0212 Tg CH4 released in 201638. We estimated the total CH4 emissions to be 0.36±0.08, 

0.42±0.22 and 0.38±0.20 Tg/yr for the years of 2014, 2015, and 2016, respectively. We did not 

specially exclude the measurements during the event period in the inversions,  therefore, the higher 

estimates for CH4 emissions in 2015-2016 than the value in 2014 may due to the Aliso Canyon 

event. The difference of estimates in 2015-2016 against estimates in 2014 is comparable with the 

contribution of the Aliso Canyon event reported by CARB and Conley et al42. This also indicates 

that top-down studies capture all the emissions from all the sources in a region, including episodic 

events.  Therefore, additional caution and caveats should be considered in direct comparisons 
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against generalized bottom-up inventories that are not corrected for regions and time periods of 

interest.  

 

San Joaquin Valley. According to the ensemble inversions, The total CH4 emissions in the SJV 

were quantified to be 0.94±0.18 Tg/yr, which is higher than CALGEM (0.78 Tg/yr) by a factor of 

1.0-1.4, and higher than EPA-GHGI (0.90 Tg/yr) by a factor of 0.8-1.2. Two independent top-

down studies from Jeong et al.2 and Cui et al.19  have quantified CH4 emissions based on tower 

network and aircraft measurements respectively in the same region, and our results in this study 

are within the range of previous estimates.  

In evaluating the spatial coverage and effective constraints offered by the current monitoring 

network (Figure S1 and Figure S11), the region with the lowest constraints was observed in the 

southern SJV, with gaps in Tulare, Kings, Fresno, and Madera counties – all of which contain large 

agricultural sources.  These regions stand out as the highest priority for network expansion in the 

entire state. Adding additional measurements in SoCAB from MCP did not provide any additional 

improvement for the SJV domain given the topographical constraints offered by the mountainous 

region at the confluence of SoCAB and SJV which significantly limit wind flows between the two 

regions.  

Sacramento Valley and San Francisco Bay Area. We also estimated annual CH4 emissions for 

the SV and SFBA areas (Figure 4). Based on the ensemble results, we estimated CH4 emissions in 

SV to be 0.21±0.04 Tg/yr, which is 1.0-1.5 and 0.7-1.1 times the CALGEM (0.17 Tg/yr) and EPA-

GHGI (0.23 Tg/yr) inventories, respectively. Similarly, the ensemble emissions range of CH4 

emissions in SFBA was estimated to be 0.16±0.05 Tg/yr, which is 0.8-1.5 times the corresponding 

CALGEM (0.14 Tg/yr) and EPA-GHGI (0.14 Tg/yr) inventories. Future work in these areas is 

necessary, although they are not the largest contributors to the statewide CH4 emissions.   

Overall, the multiplatform inversions of the regional CH4 emissions are consistent with observed 

regional “hotspots” by SCIAMACHY satellite43-44 and an aircraft campaign45. The suite of 

inversions compared with previous studies also supports the robustness of our inverse modeling in 

conducting spatially resolved analysis.  
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Temporal variation. We presented the inter-annual and monthly variation of CH4 emissions based 

on the posteriors estimates (Figure 3 and Figure S12-S13). First, we did not observe the significant 

annual variability for the statewide and regional CH4 emissions during 2014-2016. This flat trend 

was partly expected, as there weren’t any major new regulations or programs in the state during 

the period of the study, which also were considered in the similar drought condition. For the 

SoCAB the Aliso Canyon event could explain the enhancements in 2015-2016, especially the year 

of 2015. The monthly variation of the statewide CH4 emissions appeared in the posterior estimates, 

such as the enhanced emissions shown in summer and winter. The enhancements in summer may 

attribute to the livestock manure mangement and landfills, and the winter enhancements could 

attribute to the natural gas demand. For the SV, the rice cultivation could explain the enhancements 

in summer months. The monthly patterns are relatively complicated and unclear in SoCAB, SFBA, 

and SJV. Nevertheless, it should be noted that the associated large uncertainties degrade the 

temporal variation analysis. In the study, the current inversion configuration has limitation to 

inversely resolve the monthly variability of CH4 emissions due to the static priors, the large model 

uncertainty, and the limited sensitives of the current GHG monitoring network to some of sources 

which may have the temporal variation.  

Sectoral CH4 emission estimates. Sectoral emission estimates are very important for accurate 

emission quantification, robust analysis of emission trends, and effective identification and 

implementation of mitigation strategies. Although an inversion study encounters substantial 

challenges in quantifying sectoral emissions due to the uncertainties from the transport model and 

the prior estimate at such small scales, the processes of inverse modeling studies can provide 

information to understand sectoral emissions in certain scenarios.  For instance, inverse modeling 

can be used to understand sectoral emissions in sub-regions which have relatively distinct spatial 

distributions of emission sectors, such as the SJV.  Therefore, we further analyzed the data for the 

SJV to evaluate the sectoral emission distributions in the region. Similar analyses were difficult in 

SoCAB, SFBA, and SV, where the sectors are collocated within the spatially resolved estimates 

for the regions.  

As the two largest emission source sectors in the SJV, emissions from the dairy sector and the oil 

and natural gas production subsector were estimated individually in the study.  Moreover, these 

sectors in the SJV are relatively isolated geographically.  Cui et al.19 combined the extra spatial 
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information of the two major sources with the inversion results to obtain their contributions 

independently. In this study, we used the same spatial information and the source contribution 

analysis as Cui et al.19 to calculate the sectoral CH4 emissions in the SJV based on our multi-

platform inversions.   

According to the inversions, we derive the total emissions of the dairy and the production of ONG 

sectors in the SJV to be 0.44±0.36 and 0.22±0.23 Tg CH4/yr, respectively (Table S10). Based on 

the same geographical locations, CH4 emissions from the dairy and the ONG production subsector 

are estimated by CALGEM to be 0.66 and 0.05 Tg/yr, while EPA-GHGI estimates them at 0.28 

and 0.27 Tg CH4/yr, respectively. As another source of comparison, we note that the analysis of 

California ONG emissions by Jeong et al.46 estimated SJV ONG emissions of 0.17 Tg CH4/yr, 

roughly midway between the CARB and EPA-GHGI estimates. The distinct differences in spatial 

patterns between the two prior inventories account for the large uncertainties in our posterior 

estimates. Specifically, to evaluate the CARB inventory, we focused on the posterior results 

against the corresponding prior (CALGEM that is scaled to the CARB inventory), the dairy sector 

is 100%-115% of the prior, which suggests that emissions from the dairy sector may be 

underestimated in the CARB inventory, whereas the ONG production subsector is similar to the 

prior estimates. Overall, the large uncertainties associated with the posterior estimates suggest that 

the current tower network in the SJV likely limits the sectoral emission analysis.   

The sectoral emission estimates have been investigated by a previous study (Cui et al 19), which 

used airborne measurements to quantify the emissions of the DLS and ONG sources ( 103 ±29 and 

24±11  Mg CH4/hr, respectively) for summer 2010. Within the uncertainties, our results for the 

emissions from the ONG production sector are comparable with Cui et al33.  We could not directly 

compare the annual emission rates derived in the study with the values from the short-time aircraft 

study. Overall, the results emphasize that additional measurements and studies are required for 

understanding the dairy emission estimates in the SJV.  

Implications. Long-term measurements of CH4 mixing ratios play a significant role in developing 

a consistent and comprehensive analysis of statewide CH4 emissions, and in tracking the 

effectiveness of CH4 emission reduction strategies. Additionally, top-down studies with robust 

atmospheric measurements can provide a timely review of real-world inventory trends and the 
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effectiveness of emission reduction measures as we reach climate target years. This study used an 

inverse modeling analysis approach on a multi-year dataset collected from a first-of-its-kind 

statewide GHG monitoring network and other complementary datasets to evaluate the statewide 

and regional methane emissions in California.  The data and the analysis were useful to provide an 

independent broad review of the emission estimates in the state and suggest areas of improvement 

for emissions research as well as network expansion/optimization. The analysis suggests that the 

total top-down statewide methane emissions are higher than the bottom up anthropogenic 

emissions estimates by 14-47%, which is consistent with earlier published results in the 

literature.  Some of this discrepancy is likely due to contributions from natural and biogenic 

sources that are currently not included in the inventory, since they are out of the scope of 

regulations.  Some additional emissions are expected to be contributions from methane super-

emitter point sources, and other episodic events.  The points to the need for additional source-

specific and sector-specific emissions research to better quantify and inform the bottom-up 

inventories, including research for better California-specific activity and emission factor 

information for dairy, landfills, and the oil/gas sector, which needs other top-down measurement-

based methods or model-based methods with much finer resolution.  Overall, a hybrid spatial 

inventory with landfill and oil/gas sector emissions from EPA-GHGI and the dairy and other sector 

emissions from CALGEM provided the best optimized model performance. Regionally, the SJV 

has the largest concentration of methane emission sources with roughly 50% of the statewide 

CH4 emissions, followed by the SoCAB, SV and SFBA.  The dairy sector is the single largest 

source in the SJV and is roughly twice as large as the next largest emissions source, the oil and 

natural gas production subsector. The analysis also identifies the highest priority region to expand 

the monitoring network, as well as points to additional analytical opportunities to better understand 

the emission sectors in the state. 

Next steps. CARB has started expanding the GHG monitoring network and plans to add three 

additional stations in the SJV (Figure S15).  CARB is also using the analysis products to add two 

special monitoring stations in the state, with capabilities to conduct ongoing real-time 

measurement and analysis of Volatile Organic Compounds and several fluorinated gases. This data 

is expected to be useful to conduct source apportionment analysis to analyze and track the various 

GHG emissions source sectors. Additionally, CARB is deploying a statewide ceilometer network 
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to monitor PBLH to evaluate and improve atmospheric transport model simulation. Similarly, 

continuing airborne measurements will provide valuable data to estimate GHG emissions at 

multiple spatial and temporal scales for sub-regions, and will be useful to investigate individual 

source sectors. 

 

Supporting Information  

Additional information about the CARB GHG monitoring network, the WRF configuration, 

FLEXPART-WRF footprints, inverse modeling framework, PBLH evaluation, simulating time in 

FLEXPART-WRF, hybrid prior inventory, sectoral analysis for San Joaquin Valley, sub-region 

CH4 emission estimate, and acknowledgement; Figures S1-S17; Table S1−S10.  
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Figure 1.  The maps with the locations of the stationary network sites (blue and red dots) and 

flight path (blue lines) where CH4 measurements were obtained for the 2014-2016 period.  
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Figure 2. Combined 3-hour averaged CH4 mixing ratios used in inversions from up to 14 tower 

sites (blue) and aircraft measurements for 2014-2016 respectively, together with the background 

values determined in the study (green). Data points marked by the double-headed orange arrow 

are aircraft measurements.  
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Figure 3. The annual CH4 emission estimates during 2014-2016 in California derived from this 

study. The bottom-up inventories (CALGEM version3 and EPA-GHGI) for 2012 are shown as 

well. The shaded region in light-green represents previous top-down studies listed in Table S1 

within the uncertainty analysis (lower and upper bounds are marked as green dashed lines). In 

addition, the values of black lines are annual CH4 emission estimates from the CARB inventory. 

Ensemble values are from 6 members for each year and the 18 members for 3 years. The 

uncertainty calculated in each inversion case is structured in 1-sigma, and the uncertainties of 

ensemble results are presented at 95% confidence (2-sigma).  
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Figure 4. Sub-regional CH4 emission estimates from our ensemble inversion results of all cases 

or of cases associated with best footprint coverages, respectively, compared with two gridded 

bottom-up inventories used in the study. The shaded region in light-green represents previous 

top-down studies. Inversions in the study include estimates of the exceptional gas leak event at 

Aliso Canyon. The uncertainties of ensemble results are presented at 95% confidence (2-sigma).  
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